Chain Drives

A Chain Drive consists of an endless chain wrapped around two sprockets. The chain consists of a number of links connected by pin joints, while the sprocket are toothed wheels with a special profile for teeth.

Advantages of chain drives

1. Chain drives can be used for long as well as short centre distances.
2. No. of Shafts can be driven in the same or opposite direction by means of the chain from a single driving sprocket.
3. Chain drives are compact than belt drives
4. These are positive drives, because there is no slip. Hence efficiency is high

Dis Advantages of chain drives

1. These are not suitable when precise motion is required due to polygonal effect.
2. Proper maintenance is required, particularly lubrication and slack adjustment.
3. Chain drives generates noise.

Roller Chain

The roller chain consists of alternate links made of inner and outer plates. There are five parts in roller chain
i) Pin
ii) Bush
iii) Roller

iv) Inner plate
v) Outer plate

Roller Chain

- The pin is press fitted to outer link plate
-The bush is press fitted to inner link plate
-Bush and Pin form a swivel joint and outer link is free to swivel with respect to inner link

-The rollers are freely fitted on bushes and during engagement, turn with the teeth of the sprocket wheels.
- This results in rolling friction instead of sliding friction b / w roller and sprocket teeth

Pitch

The pitch of the chain is the linear distance between the axes of adjacent rollers.

Geometric Relationships

The engagement of the sprocket wheel is shown in the figure.
$\mathrm{D}=$ Pitch circle diameter
$\alpha=$ Pitch angle

$$
\alpha=\frac{360}{z}
$$

Where $\mathrm{z}=$ number of teeth on sprocket

$$
\begin{aligned}
& \sin \left(\frac{\alpha}{2}\right)=\frac{(p / 2)}{(D / 2)} \\
& D=\frac{p}{\sin \left(\frac{\alpha}{2}\right)} \\
& D=\frac{p}{\sin \left(\frac{180}{z}\right)} \quad \because \alpha=\frac{360}{z} \\
& \text { Faculty : Dr. M. RAJA ROY }
\end{aligned}
$$

The velocity ratio i of the chain drives is given by

$$
i=\frac{z_{2}}{z_{1}}=\frac{n_{1}}{n_{2}}
$$

Where $\mathrm{n}_{1}, \mathrm{n}_{2}=$ speeds of rotation of driving and driven shafts(r.p.m)
$z_{1}, z_{2}=$ number of teeth on driving and driven sprockets.

The velocity of the chain is given by

$$
\begin{aligned}
& v=\frac{\pi D n}{60 \times 10^{3}} \\
& v=\frac{z p n}{60 \times 10^{3}}
\end{aligned} \quad\left[\begin{array}{l}
D=\frac{p}{\pi / z} \\
D=\frac{z p}{\pi}
\end{array}\right] \text { for small values of } \sin
$$

Where v is the velocity in m / s.

The Length of the chain is always expressed in terms of the number of links

$$
L=L_{n} \times p \quad \begin{array}{ll}
L_{n}=\text { No. of links in the chain } \\
& p=\text { pitch }
\end{array}
$$

The length of the chain may be deduced from the length of the open belt drive
$L=2 a+\frac{\pi}{2}\left(D_{1}+D_{2}\right)+\frac{\left(D_{2}-D_{1}\right)^{2}}{4 a}$
Substitute $D=\frac{z p}{\pi}$
$L=2 a+\frac{\pi}{2}\left(\frac{z_{1} p}{\pi}+\frac{z_{2} p}{\pi}\right)+\frac{\left(\frac{z_{2} p}{\pi}-\frac{z_{1} p}{\pi}\right)^{2}}{4 a}$

$$
\begin{aligned}
& L=2 a+\frac{\pi}{2}\left(\frac{z_{1} p}{\pi}+\frac{z_{2} p}{\pi}\right)+\frac{\left(\frac{z_{2} p}{\pi}-\frac{z_{1} p}{\pi}\right)^{2}}{4 a} \\
& L=2 a+\frac{\pi}{2} \cdot \frac{p}{\pi}\left(z_{1}+z_{2}\right)+\left(\frac{z_{2}-z_{1}}{2 \pi}\right)^{2} \times\left(\frac{p^{2}}{a}\right) \\
& L=p \times\left(2\left(\frac{a}{p}\right)+\left(\frac{z_{1}+z_{2}}{2}\right)+\left(\frac{z_{2}-z_{1}}{2 \pi}\right)^{2} \times\left(\frac{p}{a}\right)\right) \\
& L=p \times L_{n}
\end{aligned}
$$

$$
L_{n}=2\left(\frac{a}{p}\right)+\left(\frac{z_{1}+z_{2}}{2}\right)+\left(\frac{z_{2}-z_{1}}{2 \pi}\right)^{2} \times\left(\frac{p}{a}\right)
$$

Centre distance between axes of the two sprockets is given by
$a=\frac{p}{4}\left\{\left[L_{n}-\left(\frac{z_{1}+z_{2}}{2}\right)\right]+\sqrt{\left[L_{n}-\left(\frac{z_{1}+z_{2}}{2}\right)\right]^{2}-8\left[\frac{z_{2}-z_{1}}{2 \pi}\right]^{2}}\right\}$

Centre distance is reduced by (0.002 to 0.004) a to account for sag.

Polygonal Effect

When the link $A B$ at $D / 2$ distance,
linear velocity is
$v_{\max }=\frac{\pi D n}{60 \times 10^{3}} \mathrm{~m} / \mathrm{s}$

When the link AB at $\frac{D}{2} \operatorname{Cos}\left(\frac{\alpha}{2}\right)$ distance,
linear velocity is

$$
v_{\min }=\frac{\pi D n \cdot \cos \left(\frac{\alpha}{2}\right)}{60 \times 10^{3}} \mathrm{~m} / \mathrm{s}
$$

When the link AB at $\frac{D}{2} \operatorname{Cos}\left(\frac{\alpha}{2}\right)$ distance, linear velocity is

$$
v_{\min }=\frac{\pi D n \cdot \cos \left(\frac{\alpha}{2}\right)}{60 \times 10^{3}} \mathrm{~m} / \mathrm{s}
$$

The variation in the velocity is given by

$$
\begin{aligned}
& v_{\max }-v_{\min } \infty\left[1-\cos \left(\frac{\alpha}{2}\right)\right] \\
& v_{\max }-v_{\min } \infty\left[1-\cos \left(\frac{180}{z}\right)\right]
\end{aligned}
$$

As the number increases to infinity the variation will be zero.

Minimum no. of teeth on the driving sprocket are 17.

Power Rating of Roller Chains

Power transmitted $k W=\frac{P_{1} v}{1000}$
Where $\quad P_{1}=$ allowable tension in the chain(N)
$v=$ average velocity of chain ($\mathrm{m} / \mathrm{sec}$)
$k W$ rating of chain $=\frac{k W \times K_{s}}{K_{1} \times K_{2}}$
Where $\mathrm{K}_{\mathrm{s}}=$ Service factor -> Takes into consideration of shock \& vibration
$\mathrm{K}_{1}=$ Multiple strand factor
$\mathrm{K}_{2}=$ Tooth correction factor

PB1 It is required to design a chain drive to connect a 10Kw 1440rpm electric motor to a centrifugal pump running at 720 rpm .
The service conditions involve moderate shocks Find
i) Power rating
ii) Determine the pitch circle diameters of driving and driven sprockets.
iii) Determine the no. of chain links
iv) Specify the correct centre distance between the axes of the sprockets.

Assume : $\mathrm{K}_{\mathrm{s}}=1.3, \mathrm{~K}_{1}=1, \mathrm{~K}_{2}=1$ and $\operatorname{pitch}(\mathrm{p})=19.05 \mathrm{~mm}$
Sol : Given data
Power (KW) $=10 \mathrm{Kw}$
$\mathrm{N} 1=1440 \mathrm{rpm}$
$\mathrm{N} 2=720 \mathrm{rpm}$
i) $k W$ rating of chain $=\frac{k W \times K_{s}}{K_{1} \times K_{2}}=$

PB1 It is required to design a chain drive to connect a 10Kw 1440rpm electric motor to a centrifugal pump running at 720 rpm .
The service conditions involve moderate shocks Find
i) Power rating
ii) Determine the pitch circle diameters of driving and driven sprockets.
iii) Determine the no. of chain links
iv) Specify the correct centre distance between the axes of the sprockets.

Assume : $\mathrm{K}_{\mathrm{s}}=1.3, \mathrm{~K}_{1}=1, \mathrm{~K}_{2}=1$ and pitch $(\mathrm{p})=19.05 \mathrm{~mm}$
Sol : Given data
Power (KW) $=10 \mathrm{Kw}$
n1=1440rpm
$\mathrm{n} 2=720 \mathrm{rpm}$
i) $k W$ rating of chain $=\frac{k W \times K_{s}}{K_{1} \times K_{2}}=\frac{10 \times 1.3}{1 \times 1}=13 \mathrm{KW}$
ii) Pitch circle diameter of driving sprocket $\left(D_{1}\right)$:

$$
\begin{aligned}
& D_{1}=\frac{p}{\sin \left(\frac{180}{z_{1}}\right)} \quad \text { Assume no. of teeth on the driving sprocket }=17 . \\
& D_{1}=\frac{19.05}{\sin \left(\frac{180}{17}\right)}=
\end{aligned}
$$

ii) Pitch circle diameter of driven sprocket $\left(D_{2}\right)$:

$$
\begin{array}{ll}
D_{2}=\frac{p}{\sin \left(\frac{180}{z_{2}}\right)} & i=\frac{z_{2}}{z_{1}}=\frac{n_{1}}{n_{2}} \\
D_{2}=\frac{19.05}{\sin \left(\frac{180}{z_{2}}\right)}= & \begin{array}{l}
z_{2} \\
n_{2}
\end{array} z_{1}= \\
\text { Faculty : Dr. M. RAJA ROY } \quad \text { www.mrrtechnical.co.in }
\end{array}
$$

ii) Pitch circle diameter of driving sprocket $\left(D_{1}\right)$:

$$
\begin{aligned}
& D_{1}=\frac{p}{\sin \left(\frac{180}{z_{1}}\right)} \quad \text { Assume no. of teeth on the driving sprocket }=17 . \\
& D_{1}=\frac{19.05}{\sin \left(\frac{180}{17}\right)}=103.67 \mathrm{~mm}
\end{aligned}
$$

ii) Pitch circle diameter of driven sprocket $\left(D_{2}\right)$:

$$
\begin{array}{ll}
D_{2}= & \frac{p}{\sin \left(\frac{180}{z_{2}}\right)} \\
& i=\frac{z_{2}}{z_{1}}=\frac{n_{1}}{n_{2}} \\
D_{2}= & \frac{19.05}{\sin \left(\frac{180}{34}\right)}=206.46 \mathrm{~mm} \\
z_{2} & \frac{n_{1}}{n_{2}} \times z_{1}=\frac{1440}{720} \times 17=34
\end{array}
$$

iii) No. of chain links (L_{n}):

Assume $a=40 p \quad=>a=40 \times 19.05=762 \mathrm{~mm}$.

$$
\begin{aligned}
L_{n} & =2\left(\frac{a}{p}\right)+\left(\frac{z_{1}+z_{2}}{2}\right)+\left(\frac{z_{2}-z_{1}}{2 \pi}\right)^{2} \times\left(\frac{p}{a}\right) \\
& =2\left(\frac{762}{19.05}\right)+\left(\frac{17+34}{2}\right)+\left(\frac{34-17}{2 \pi}\right)^{2} \times\left(\frac{19.05}{762}\right)=
\end{aligned}
$$

iii) No. of chain links $\left(L_{n}\right)$:

Assume $\mathrm{a}=40 \mathrm{p} \quad=\mathrm{a}=40 \times 19.05=762 \mathrm{~mm}$.

$$
\begin{aligned}
L_{n} & =2\left(\frac{a}{p}\right)+\left(\frac{z_{1}+z_{2}}{2}\right)+\left(\frac{z_{2}-z_{1}}{2 \pi}\right)^{2} \times\left(\frac{p}{a}\right) \\
& =2\left(\frac{762}{19.05}\right)+\left(\frac{17+34}{2}\right)+\left(\frac{34-17}{2 \pi}\right)^{2} \times\left(\frac{19.05}{762}\right)=105.6
\end{aligned}
$$

$L_{n}=106$ links
iv) Correct Centre distance.
$a=\frac{p}{4}\left\{\left[L_{n}-\left(\frac{z_{1}+z_{2}}{2}\right)\right]+\sqrt{\left[L_{n}-\left(\frac{z_{1}+z_{2}}{2}\right)\right]^{2}-8\left[\frac{z_{2}-z_{1}}{2 \pi}\right]^{2}}\right\}$
iv) Correct Centre distance.
$a=\frac{p}{4}\left\{\left[L_{n}-\left(\frac{z_{1}+z_{2}}{2}\right)\right]+\sqrt{\left[L_{n}-\left(\frac{z_{1}+z_{2}}{2}\right)\right]^{2}-8\left[\frac{z_{2}-z_{1}}{2 \pi}\right]^{2}}\right\}$
$a=762.026 \mathrm{~mm}$
$a=762.026 \times 0.998=760.47 \mathrm{~mm} \quad$ (After compensating the sag)

PB2 A simple chain No. 10B is used to transmit power from a 1400 rpm electric motor to a line shaft running at 350 rpm . The number of teeth on the driving sprocket wheel are 19. Calculate
i) Power to be transmitted.
ii) Tension in the chain
iii) Factor of safety for the chain based on the breaking load.

Assume : $\mathrm{K}_{\mathrm{s}}=1.0, \mathrm{~K}_{1}=1.0, \mathrm{~K}_{2}=1.11$, $\operatorname{pitch}(\mathrm{p})=15.875 \mathrm{~mm}$
Power rating $=11.67 \mathrm{Kw}, \quad$ Breaking load $=22.7 \mathrm{KN}$
Sol : Given data
$\mathrm{n} 1=1440 \mathrm{rpm}$
n2 $=350 \mathrm{rpm}$
$Z_{1}=19$
i) Power to be transmitted

Power rating $=\frac{k W \times K_{s}}{K_{1} \times K_{2}}$

PB2 A simple chain No. 10B is used to transmit power from a 1400 rpm electric motor to a line shaft running at 350 rpm . The number of teeth on the driving sprocket wheel are 19. Calculate
i) Power to be transmitted.
ii) Tension in the chain
iii) Factor of safety for the chain based on the breaking load.

Assume: $\mathrm{K}_{\mathrm{s}}=1.0, \mathrm{~K}_{1}=1.0, \mathrm{~K}_{2}=1.11$, $\operatorname{pitch}(\mathrm{p})=15.875 \mathrm{~mm}$
Power rating $=11.67 \mathrm{Kw}, \quad$ Breaking load=22.7KN
Sol : Given data
$\mathrm{n} 1=1400 \mathrm{rpm}$
n2 $=350 \mathrm{rpm}$
$Z_{1}=19$
i) Power to be transmitted
$11.67=\frac{\mathrm{kW} \times 1.0}{1.0 \times 1.11}$
$K W=12.98 \mathrm{KW}$
ii) Tension in the chain

$$
\begin{aligned}
& v=\frac{z p n}{60 \times 10^{3}}=\frac{19 \times 15.875 \times 1400}{60 \times 10^{3}}= \\
& k W=\frac{P_{1} v}{1000} \\
& 12.98=\frac{P_{1} v}{1000}
\end{aligned}
$$

ii) Tension in the chain
$v=\frac{z p n}{60 \times 10^{3}}=\frac{19 \times 15.875 \times 1400}{60 \times 10^{3}}=7.04 \mathrm{~m} / \mathrm{sec}$
$k W=\frac{P_{1} v}{1000}$
$12.98=\frac{P_{1} \times 7.04}{1000} \Rightarrow P_{1}=$
ii) Tension in the chain

$$
v=\frac{z p n}{60 \times 10^{3}}=\frac{19 \times 15.875 \times 1400}{60 \times 10^{3}}=7.04 \mathrm{~m} / \mathrm{sec}
$$

$$
k W=\frac{P_{1} v}{1000}
$$

$$
12.98=\frac{P_{1} \times 7.04}{1000} \Rightarrow P_{1}=1839.4 \mathrm{~N}
$$

ii) Factor of Safety

$$
f_{s}=\frac{\text { Breaking load }}{\text { Working load }}
$$

ii) Tension in the chain

$$
v=\frac{z p n}{60 \times 10^{3}}=\frac{19 \times 15.875 \times 1400}{60 \times 10^{3}}=7.04 \mathrm{~m} / \mathrm{sec}
$$

$$
k W=\frac{P_{1} v}{1000}
$$

$$
12.98=\frac{P_{1} \times 7.04}{1000} \Rightarrow P_{1}=1839.4 \mathrm{~N}
$$

ii) Factor of Safety

$$
f_{s}=\frac{\text { Breaking load }}{\text { Working load }}=\frac{22 \times 1000}{1839.49}=12.34
$$

PB3 Design a roller chain drive for driving a compressor by 12 KW rated electric motor, running at $1200 \mathrm{r} . \mathrm{p} . \mathrm{m}$. The compressor speed is around $350 \mathrm{r} . \mathrm{p} . \mathrm{m}$.
Number of teeth on pinion are 25
Assume: $\mathrm{K}_{\mathrm{s}}=1.25, \mathrm{~K}_{1}=1.0, \mathrm{~K}_{2}=1.0, \operatorname{pitch}(\mathrm{p})=15.875 \mathrm{~mm}$
Breaking load $=44.5 \mathrm{KN}$
Sol : Given data
$\mathrm{n} 1=1200 \mathrm{rpm}$
n2 $=350 \mathrm{rpm}$
$Z_{1}=25$
Pitch Circle Dia of the sprocket pinion

$$
\begin{aligned}
& D_{1}=\frac{p}{\sin \left(\frac{180}{z_{1}}\right)} \\
& D_{1}=\frac{15.875}{\sin \left(\frac{180}{25}\right)}=
\end{aligned}
$$

PB3 Design a roller chain drive for driving a compressor by 12KW rated electric motor, running at $1200 \mathrm{r} . \mathrm{p} . \mathrm{m}$. The compressor speed is around $350 \mathrm{r} . \mathrm{p} . \mathrm{m}$.
Number of teeth on pinion are 25 . Velocity ratio $=3.5$
Assume : $\mathrm{K}_{\mathrm{s}}=1.25, \mathrm{~K}_{1}=1.0, \mathrm{~K}_{2}=1.0, \operatorname{pitch}(\mathrm{p})=15.875 \mathrm{~mm}$

$$
\text { Breaking load }=44.5 \mathrm{KN}
$$

Sol: Given data
$\mathrm{n} 1=1200 \mathrm{rpm}$
n2 $=350 \mathrm{rpm}$
$Z_{1}=25$
Pitch Circle Dia of the sprocket pinion

$$
\begin{aligned}
& D_{1}=\frac{p}{\sin \left(\frac{180}{z_{1}}\right)} \\
& D_{1}=\frac{15.875}{\sin \left(\frac{180}{25}\right)}=127 \mathrm{~mm} \\
& \text { Faculty : Dr. M. RAJA ROY www.mrtechnical.co.in }
\end{aligned}
$$

Pitch Circle Dia of the sprocket gear

$$
\begin{aligned}
& D_{2}=\frac{p}{\sin \left(\frac{180}{z_{2}}\right)} \\
& D_{2}=\frac{15.875}{\sin \left(\frac{180}{88}\right)}=
\end{aligned}
$$

Velocity of Chain

$$
v=\frac{\pi D_{1} N_{1}}{60}=
$$

Pitch Circle Dia of the sprocket gear

$$
\begin{aligned}
& D_{2}=\frac{p}{\sin \left(\frac{180}{z_{2}}\right)} \\
& D_{2}=\frac{15.875}{\sin \left(\frac{180}{88}\right)}=448.8 \mathrm{~mm}
\end{aligned}
$$

Velocity of Chain

$$
v=\frac{\pi D_{1} N_{1}}{60}=\frac{\pi \times 0.127 \times 1200}{60}=8 \mathrm{~m} / \mathrm{sec}
$$

Load on Chain

$$
K W=\frac{P_{1} v}{1000}
$$

$$
\text { Power rating }=\frac{k W \times K_{s}}{K_{1} \times K_{2}}
$$

$$
12=\frac{k W \times 1.25}{1 \times 1}
$$

$$
K W=9.6 K w
$$

Load on Chain

$$
\begin{aligned}
& K W=\frac{P_{1} v}{1000} \\
& 9.6=\frac{P_{1} \times 8}{1000} \\
& P_{1}=1200 N
\end{aligned}
$$

Assume distance equal to 30 p
Number of links in the chain is given by

$$
\begin{aligned}
& L_{n}=2\left(\frac{a}{p}\right)+\left(\frac{z_{1}+z_{2}}{2}\right)+\left(\frac{z_{2}-z_{1}}{2 \pi}\right)^{2} \times\left(\frac{p}{a}\right) \\
& L_{n}=
\end{aligned}
$$

Assume distance equal to 30 p
Number of links in the chain is given by

$$
\begin{aligned}
& L_{n}=2\left(\frac{a}{p}\right)+\left(\frac{z_{1}+z_{2}}{2}\right)+\left(\frac{z_{2}-z_{1}}{2 \pi}\right)^{2} \times\left(\frac{p}{a}\right) \\
& L_{n}=119.82 \text { say120links }
\end{aligned}
$$

